In this section you will find questions and answers all about warnings and alarms
with sirens.

If you do not find your question here, or if you need more information, please contact us using the contact link.

What are the five most distinguishing features of electronic sirens?

  • Operation with rechargeable batteries, therefore independent of mains voltage
  • Large ranges can be achieved
  • Voice announcements are possible
  • No moving parts, therefore very low-maintenance
  • Very good level of efficiency (electrical output/acoustic volume)

What sound propagation options do electronic sirens offer?

  • Omni-directional (360°) sound propagation for standard assembly of the horns
  • Directed mounting of the horns means the sound will carry in this direction.

What is the acoustic output of the electronic siren?

The ECN electronic sirens are available in various output classes. They have a characteristic sound output of 109 dB(A), 115 dB(A), 118 dB(A), 121 dB(A), 123 dB(A) in 30 metres distance. When the sound output is higher, this usually means that greater ranges can be achieved taking the surrounding conditions and environmental influences into account.

What audible ranges can be achieved with a siren?

The audible range of a siren depends on many influencing factors and cannot be calculated generally. A siren with a higher sound output always achieves a greater range than a type with less output power.
Decisive for the range is the height and type of the assembly site and the geography of the surroundings. 

How is omni-directional sound propagation possible with an electronic siren?

The ideal arrangement of the siren horns is when they stand at 180° to each other. The diffraction at the gap of the siren horns ensures omni-directional 360° sound propagation. This physical mechanism ensures that the sound also enters the acoustic shadow. From a physical point of view, the diffraction of the sound waves can be explained using the Van Huygen principle.
The horns of the ECN sirens were developed in consideration of physical laws and were subjected to extensive testing so that an optimum sound propagation is guaranteed.

What power supply is required for an electronic siren?

Our electronic sirens are supplied as standard with a power supply of 230V/50Hz. Optionally, there are solutions for 110V/60Hz available.

How much electricity does an electronic siren consume?

When triggering a siren alarm, the required power needed to operate the amplifier is supplied by the batteries. The batteries are charged via the mains supply 230V (or 110V). The output consumption of an ECN siren is approx. 10 watt in standby mode, whilst the re-charging process of the batteries requires 150 Watt from the mains supply.

What is the sound pressure level?

The sound pressure level (SPL) is a logarithmic figure stated in decibels [dB] to describe the intensity of the sound. As the SPL is a technical figure, correlations to the perceived volume is only possible in part. To quantify the perceived volume, assessed sound pressure levels (A,B and C) are used. The A-assessment - dB(A), which is the most similar to the frequency response of the human ear, is therefore generally used for stating the SPL.
When the sound pressure level is raised by 10 dB, this is subjectively perceived as a doubling of the volume.

What signals can be generated with an electronic siren?

The alarm signals of the electronic sirens are generated by an electronic signal generator. These signals are transmitted via a pressure chamber loudspeaker in the siren horns. Theoretically it is possible to generate almost any signal tone and to transmit this via the sirens. The selection of the correct warning signal however is a decisive factor in a siren warning system.

How effective are voice announcements with electronic sirens?

One of the decisive advantages of the electronic sirens is the option that allows voice announcements to be made. As voice messages, stored or live, have a wider frequency range than siren signals, these can only be transmitted at a low volume. The audible range of a voice message is therefore usually lower than a siren signal.

What communication medium is used for a siren system?

With the spread of digital radio networks such as TETRA and DMR, these standards are increasingly replacing the classic analogue data radio.

In addition to a dedicated radio connection, control via a dedicated line is another widespread method. Furthermore, communication channels such as LAN, mobile radio or satellite are possible. Of course, the individual media can also be combined to increase the reliability of a system or to safely reach sirens in poorly connected areas.


Are sirens needed at all nowadays?

Natural disasters are becoming more frequent and political uncertainty is also increasing worldwide. It has been shown in the past that sirens can reliably warn people of impending danger. Even in times when almost everyone uses the Internet and has a cell phone, there is no certainty of being reachable at all times and in all places. The alarm of an electronic siren is unambiguous. Digital electronic sirens, with their alarm function, are therefore the first means in the warning chain. 

Countries whose coasts are threatened by tsunamis, earthquakes or flooding, for example, have often relied on sirens for years. As a result of the changed danger situation, the importance of the siren is also increasing significantly again in Germany. Siren networks are once again being modernized, expanded and rebuilt. The importance of the electronic outdoor siren issue is also reflected in the federal government's funding program, which has earmarked 80 million euros for the expansion of Germany's siren network. This sum is often supplemented by additional funding pots from the federal states.